高中排列组合公式是:C(n,m)=A(n,m)/m!=n!/m!(n-m)!与C(n,m)=C(n,n-m)。(n为下标,m为上标)。
例如C(4,2)=4!/(2!*2!)=4*3/(2*1)=6,C(5,2)=C(5,3)。
排列组合c计算 *** :C是从几个中选取出来,不排列,只组合。
C(n,m)=n*(n-1)*...*(n-m+1)/m!
例如c53=5*4*3÷(3*2*1)=10,再如C(4,2)=(4x3)/(2x1)=6。
注意事项:
1、不同的元素分给不同的组,如果有出现人数相同的这样的组,并且该组没有名称,则需要除序,有几个相同的就除以几的阶乘,如果分的组有名称,则不需要除序。
2、隔板法就是在n个元间的n-1个空中插入若干个隔板,可以把n个元素分成(n+1)组的 *** ,应用隔板法必须满足这n个元素必须互不相异,所分成的每一组至少分得一个元素,分成的组彼此相异。
3、对于带有特殊元素的排列组合问题,一般应先考虑特殊元素,再考虑其他元素。
高中排列组合公式是:C(n,m)=A(n,m)/m!=n!/m!(n-m)!与C(n,m)=C(n,n-m)。
例如C(4,2)=4!/(2!*2!)=4*3/(2*1)=6,C(5,2)=C(5,3)。
排列组合c计算 *** :C是从几个中选取出来,不排列,只组合。
C(n,m)=n*(n-1)*...*(n-m+1)/m!
例如c53=5*4*3÷(3*2*1)=10,再如C(4,2)=(4x3)/(2x1)=6。
两个常用的排列基本计数原理及应用:
1、加法原理和分类计数法:
每一类中的每一种 *** 都可以独立地完成此任务,两类不同办法中的具体 *** ,互不相同(即分类不重),完成此任务的任何一种 *** ,都属于某一类(即分类不漏)。
2、乘法原理和分步计数法:
任何一步的一种 *** 都不能完成此任务,必须且只须连续完成这n步才能完成此任务,各步计数相互独立。只要有一步中所采取的 *** 不同,则对应的完成此事的 *** 也不同。